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ABSTRACT

UTILIZATION OF ARTIFICIAL NEURAL NETWORKS
IN BUILDING DAMAGE PREDICTION

ERKUS, Baris
M.S., Department of Civil Engineering
Supervisor: Prof. Dr. Polat GULKAN

September 1999, 121 Pages

In this study effects of several characteristics of structural systems such as
shear wall, column, beam parameters on structural damage of generalised yielding
structural systems under earthquake effects are examined. In the first part of the
study one frame with shear wall, two beam and column frames and a SDOF
system are analysed for nonlinear damage under the EL Centro earthquake ground
motion. A modified version of Park and Ang damage model is employed for this
purpose. In the second part of the study, artificial neural networks, are utilised for
the implementation of damage analysis. Two types of multilayer neural network
models are used. In the first model the damage indices are estimated by two
multilayer networks trained with two different training sets obtained from the first
part of the study. In the second model a new approach is used. In this model the
problem of damage classification is implemented. For both models learning rate

and period concepts are introduced.
It is found that shear wall, column, damping and structural mass are the

most important structural parameters that effect damage. This effect is more

evident when PGA of the earthquake used in the analyses is larger than 0.2g. It is
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It is found that shear wall, column, damping and structural mass are the
most important structural parameters that effect damage. This effect is more
evident when PGA of the earthquake used in the analyses is larger than 0.2g. It is
observed that the design according to TS-500, EUROCODE-2 and ACI results in
the most economical design. Performance of the neural network implementation
of the damage indices is showed to be highly dependent on the size of the training
set. The new model proposed is observed to be an efficient tool for damage

classification problem.

Keywords: damage, damage model, nonlinear dynamic structural analysis,

artificial neural networks.
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BiNA HASAR TAHMINLERINDE
YAPAY SINiR AGLARININ KULLANILMASI

ERKUS, Barig
Yiiksek Lisans Tezi, Ingaat Miihendisligi Bsliimii

Tez Yéneticisi: Prof, Dr. Polat GULKAN

Eylil 1999, 121 Sayfa

Bu ¢aligmada yap1 sistemlerinin perde duvar, kolon, kiris gibi cesitli
6zelliklerinin, deprem etkileri altinda meydana gelen hasar iizerindeki etkileri
aragtinilmustir. Caligmanin birinci béliimde bir adet perde duvarl: gerceve, iki adet
kolon ve kirislerden meydan gelen gerceve, ve bir adet tek serbestlik dereceli
sistem, dogrusal olmayan hasar analizi yapacak sekilde El Centro deprem kayd:
kullamlarak hesaplanmistir. Bu amagla degistirilmis Park ve Ang hasar modeli
kullanilmustir. Caligmanin ikinci bolimde yapay sinir aglari hasar hesab: igin
kullamlmistir.  Calismalar iki farkh yapay sinir ag@ modeli iizerinde
yogunlagilmistir. Birinci modelde ¢ok katmanli bir ag, birinci bsliimde elde edilen
iki farkli 6grenme kiimesi kullamlarak hasar degeri hesaplamasinda kullamlmistir.
Ikinci béliimde yeni bir yaklasim denenmistir. Bu modelde hasar siniflandirma
problemi irdelenmistir. Her iki model igin 6grenme hizi araligi ve periyodu

konular: tanitilmistir.

Perde duvar, kolon, soniim ytizdesinin ve yapisal kiitlenin, yapisal hasar1
etkileyen en &nemli parametreler oldugu saptanmigtir. Bu etkinin El Centro

depreminin en yliksek yer ivmesinin 0.2g degerinden daha bliyiik olmas:



durumunda arttifs g6zlemlenmistir. TS-500 EUROCODE-2 ve ACI yap
yénetmeliklerine gdre yapilan tasarimlarin en ekonomik dizayn parametrelerini
sagladig1 saptanmistir. Yapay sinir aglarinin performasinin 6grenme kiimesinin
biiyukligiinden ¢ok etkilendigi gosterilmistir. Onerilen yeni modelin hasar

siniflandirma probleminde oldukga basarili oldugu gézlemlenmistir.

Anahtar kelimeler: hasar, hasar modeli, lineer olmayan dinemik hesap, yapay sinir

aglar1.
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CHAPTER 1

INTRODUCTION

1.1 General

Damage detection is an important task that is utilised for post-earthquake
assessment of structures, disaster planning and design code implementations.
Several attempts have been made to establish a sound prediction of the damage of
structures experienced earthquakes including visual and numerical inspection of

damage.

Post earthquake assessment of structural system helps the engineers to
estimate the vulnerability of the buildings to aftershocks and hence enabling them
to decide whether the building should be demolished or not. Disaster planning
aims to estimate the cost of a possible earthquake, number of casualties, amount
of temporary accommodation needed etc. Finally damage assessment is a very
helpful tool in the design phase in the sense that it provides considerations on a
wider range of design objectives, adjusting the design criteria according to a
performance based format. Other then these practical applications, damage

analysis can be an explanatory guide for several researches.

Every method proposed for damage detection has its own problems.
Although visual detection of damage may be very simple and quick for small-
scale structures, it may be unreliable, subjective and hard to determine for large-
scale structures. Problems with visual inspection directed the researchers to study
on numerical detection of damage, which is basically based on the estimation of
the response history and change in the dynamical characteristics of the earthquake
experienced building. More or less the methods followed to obtain a numerical

value of damage are same. A mathematical model of the structure and a damage



model are constructed first. The structure is exposed to an earthquake loading
whose parameters such as peak ground acceleration, dominant period or effective
duration are known and observing the changes in different characteristics of the
structure will lead to numerical values of element and structure level damages

namely local and global damage indices respectively.

The measures employed in damage models that the structure owes such as
ductility ratio, interstorey drift, accumulated plastic deformation and energy
dissipated during the cyclic response, changes in stiffness and ultimate strength,
bring important problems concerning the reliability of the result. First of all. these
parameters of the structure that is exposed to earthquake should be known which
is a challenging job. For example to estimate the energy dissipated during the
earthquake will be almost impossible if special devices which will determine the
response are not placed on the structure prior to earthquake, which is nearly true
for other parameters. This is obviously unpractical and uneconomical way to
detect the damage in public sense. Second, the mathematical models that are used
to simulate the nonlinear response of structures to eliminate the in-situ estimation
of the structural parameters should give the nearly exact response of structure.
which is ever challenging problem of the structural engineering. Third the
parameters that have no units in damage models should give realistic results.
These parameters are proposed after statistical estimations on some experimental
data. And finally, the damage classification should be universal which means that

it should be applicable for all kind of structures.

One can increase the number of the problems that are faced during the
damage assessment. All these problems concermning with the visual or numerical
damage analysis lead the researchers to study on more practical, economical.
quick but reliable damage assessment techniques. One of these techniques,
namely damage assessment using neural networks, aims to predict the damage
numerically or just by doing a classification, using a database of previous
earthquakes and damage data but without making a nonlinear dynamic analysis.

Studies on this concept is very new to structural engineering although artificial



neural networks have become a very popular and powerful tool for several
engineering areas such as electrical, mechanical and aerospace engineering. Very
little studies on neural network implementation of damage analvsis have shown
that neural networks will work well if the neural network model is designed very

well.

What basically neural networks do is to classify similar data or to make an
interpolation or an extrapolation in an n-dimensional space or after a process
called “training” which is done using a pre-estimated input-output set, namely
training set, where the input will be the earthquake and structural parameters and
the output will be the damage. The performance of the neural networks should be
checked by comparing the results it gives for the earthquakes and structures that it

never “meet” before with the actual results.

Although utilising these methods is a very simple task, and reliable results
can be obtained for some kind of problems, one should always keep in mind that
this will not mean that the same neural networks model will give reliable results
for different types of systems or problems. Moreover since these methods are very
new to structural engineering society, they need deeper research and stronger

understanding of neural networks concepts.

1.2 Object and Scope

The main object of the current study is to investigate the effects of
different parameters on damage of reinforced concrete structures and observe the
performance of the neural network implementation of damage anaiysis. For this
purpose software called IDARC for the two dimensional, inelastic damage
analysis of reinforced concrete frames and software for the neural network
analysis are used. In the first part, three reinforced concrete frames and a single
degree of freedom system are analysed with IDARC to observe the performance

of the software. The effects of the peak ground acceleration, column, beam and



shear wall parameters, damping and mass distribution on the damage are
observed. The damage model used in the software is modified version of Park and
Ang model. In the second part of the study two neural network implementations
are studied. In the first model the numerical estimation of damage is studied,

while in the second model the classification of damage is tested.



CHAPTER 2

IDARC2D: A COMPUTER PROGRAM FOR THE
INELASTIC DAMAGE ANALYSIS OF BUILDINGS

2.1 General

Developments in the computer technology have guided the research in
structural engineering from an experimental based understanding of member and
structure behaviour to an experimental validation of computer based models of
members and structures. Several nonlinear analysis software is produced to
predict the exact behaviour of the structures. Kaanan and Powell introduced the
most well known software DRAIN-2D in 1973 to perform a nonlinear time-
history analysis. The other software, like SARFC, ANSR, IDARC are reported to
be used in the research fields [1. 9]. These software did not become popular in the
engineering market since the reliability of the software are not verified well and

they are not aimed to be used by end-users but only researchers.

In this study it was decided to use IDARC since it enables modelling of
shear walls and damage analysis in addition to other analysis options. In this
chapter a review of the element modelling and theory of structural and damage
analysis will be given. Additional information can be found in the technical report

of IDARC [9].

2.2 Element Models

In IDARC, each type of element has its own stiffness formulation. These

macro formulations are then combined to obtain the stiffness matrix of the whole

structure. Element stiffness matrices are updated according to the model called



spread plasticity model during the nonlinear time history analyse. The general
formulation of the stiffness matrices of the elements that relates end moments and

the end rotations at the face of structural element is given by Equation 2.1.

[K']z kaa kab
kba kbb ) (2‘1)
Where,
12E] EI EI, . .
aa = 10) La —~(f,G4,L* +12E1,EI EI,) (22)
ef
—12EIEL EI, , ..
k,=k, = ——D°—La__b_( JwGA L’ +12EI EI EI) (2.3)
et
K, = ——_____legE[{ 2y (1 GAL +12E1,E1 EI,) (2.4)
et

and Ely is elastic rotational stiffness at the center of the element; El, and EI, are
the tangential rotational stiffnesses at the ends of the element; GA, is the shear
stiffness of the element; L is the length of the element; Jaa fabs fob are the flexibility
coefficients. Derivations and formulations of Jaas fab, foo De are given in the
technical report [9]. How this element matrix will be used to obtain the structural

stiffness matrix will be explained briefly later in this chapter.

In this study only the column, beam, shear wall and edge column elements
are used. In IDARC, these elements are modelled considering flexural, shear and
axial deformations. Hysteretic flexural and shear deformations are modelled by
three-parameter Park model while the default model of axial deformations is
linear-elastic spring in this software. A rigid zone can be defined for the column
and beam elements to increase the stiffness at the joints. To employ the spread
plasticity model when finding K’, moment curvature relations of the cross-
sections at the ends of the members should be obtained which is done by
obtaining the parameters of a simplified trilinear relation whose graph is given in

Figure 2.1. These parameters can be given as inputs by the user or can be
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estimated by the software using formulations defined for every type of element.

This simplified version is used for other shear-drift relations also.

Force

Deformation

Figure 2.1 Simplified trilinear force-deformation relation used in IDARC

The degrees of freedom for the column, beam and shear wall macro
clements are given in Figure 2.2, Figure 2.3, and Figure 2.4, respectively. Edge

columns are modelled as axial springs. Hence they have only axial deformations.

The stiffness matrix of the element is transformed into another stiffness
matrix K, which relates the moments and rotations at the nodes. Considering the
force equilibrium of all the forces perpendicular to the axis of the element, the
final stiffness matrix K, is obtained for shear and moments and the corresponding

deformations by some algebra.

2.3 Hysteretic Rules

The hysteretic behaviour of the elements is modelled by three-parameter
Park model in IDARC [9]. This model integrates three parameters namely,
strength degradation, stiffness degradation and pinching into the hysteretic
behaviour ‘(Figures 2.5, 2.6, 2.7). The element stiffness matrices are updated

according this hysteretic behaviour during the nonlinear analysis.
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Figure 2.2 Degrees of freedom of a column element used in IDARC
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Figure 2.3 Degrees of freedom of a beam element used in IDARC
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Figure 2.4 Degrees of freedom of a shear wall element used in IDARC
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/7 // Deformation

Figure 2.5 Stiffness degradation modelling in IDARC
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Figure 2.6 Strength degradation modelling used in IDARC

Force

/ Deformation

Figure 2.7 Pinching modelling used in IDARC
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2.4 Analysis

There are four options for analysis in IDARC. In this study Nonlinear
Dynamic Analysis is used. In this type of analysis first of all the element stiffness
matrices and trilinear moment curvature relations are obtained using initial axial
loads on the columns supplied by the user. Second the global stiffness matrix is
obtained. After calculation of all these matrices the following equation is solved
using a combination of Newmark-Beta integration method and pseudo-force

method.

[M}ai}+ [Cl{ad}+ [K, [{Au) = ~M{L}as, 2.5)
Where M is the lumped mass matrix of the structure; C is the viscous damping
matrix of the structure; K, is the tangent stiffness matrix; Au, At and Aii are the
incremental vectors of displacement, velocity and acceleration in the structure
respectively; L is the allocation vector for the horizontal ground accelerations; Ax
is the incremental horizontal ground acceleration. The solution is carried out

incrementally considering the changes in the element stiffness matrix.

2.5 Spread Plasticity Model

This model is employed in IDARC to merge the different flexibility
characteristics of the various sections throughout the element into the element
stiffness matrix. This will integrate the effects of inelastic deformations that occur
near the joints into the matrix, which will result in a different curvature

distribution than that an elastic behaviour will cause.
Assumed distribution of the element flexibility is shown in the Figure 2.8.

The geometry of this diagram is determined through a model called yield
penetration model in IDARC.
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Figure 2.8 Spread plasticity model used in IDARC

The flexibility matrix including shear distortions, relating moments and

rotations at the ends of the element is given as follows:

QA _ S fAB M,
O] | Jos Jon )M, (2.6)

The flexibility coefficients are obtained from

L L

_pmom(x) o Sevi(x)v;(x) ’
(- R T @

where m;(x) and m;(x) are the moment distributions due to the virtual moment at
the ends of the element, while vi(x) and vj(x) are the corresponding shear
distributions. These integrations are evaluated to find expressions for fyy, 15, fz4,
Jesand 44, f 48, /B4, f 'Be and D,,. Expressions for this parameters can be found in

the technical report.
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2.6 Damage Analysis

In this study a modified version of Park and Damage model which is
directly supplied by IDARC is used. Hence a detailed discussion on this model

will be given here.

2.6.1 Park and Ang Damage Model

This model was introduced by Park and Ang [6] in 1984. They proposed
that damage could be expressed as a linear combination of excessive deformation
that can be called as normalised deformation and damage contributed by repeated
cyclic loading effect that can be called as energy absorption. This is represented

by a damage index

51\1
D=3—+-Q—%u— faE 2.8)

v 8
where O 1s the maxiinum deformation under earthquake; &, is the ultimate
deformation under monotonic loading; O, is the calculated yield strength (if the
maximum strength, Oy, is smaller than Q,, Q, is replaced by Q,.); dE incremental
absorbed energy; fis a non negative parameter that is obtained from statistical
analysis of past experiments. One can easily observe that if maximum
deformation is equal to ultimate deformation, which is the collapse case, damage
index will be greater than one because the energy term will be almost f. The
yielding and ultimate parameters are determined by IDARC as described in above
parts. The other earthquake loading dependent parameters are calculated during
the execution of the program. Although the formulation of ffor reinforced

concrete sections is given by Park and Ang [6] as in Equation 2.9.

g = [_ 0.447 + 0.073?3 +0.24n, +0.314 p,) x 0,77 (2.9)
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Where I/d is shear span ratio (should be taken as 1.7 if it is smaller than 1.7); n,
normalised axial stress (should be taken as 0.2 if it is smaller than 0.2); p, is
longitudinal steel ratio as percentage (should be taken as 0.75% if it is smaller
than 0.75%); and p,, is confinement ratio, Park et al. [6] suggested a value 0.1. In

IDARC the second choice is used.

This model is used for local damage indices. Then the element damage

indices are combined to obtain the global damage indices.

The classification of the damage using the above model is given by Park et

al. [6] as in Table 2.1 and by Stone and Taylor [7] as in Table 2.2.

Table 2.1 Classification of damage according to Park et al. [6]

Damage Index | Degree of Damage Physical Appearance
D<0.1 SLIGHT Sporadic Occurrence of Cracking.
Minor Cracks Throughout Building. Partial
0.1<D<0.25 MINOR
Crashing of Concrete in Columns.
Extensive Large Cracks. Spalling of
025<D<04 MODERATE
Concrete in Weaker Elements.
Extensive Crushing of Concrete. Disclosure
04<D<1.0 SEVERE
of Buckled Reinforcements.
D>1.0 COLLAPSE Total or Partial Collapse of Building.

Table 2.2 Classification of damage according to Stone and Taylor [7]

Damage Index | Degree of Damage Physical Appearance
D<0.11 SLIGHT No Damage or Localised Minor Cracking
Extensive Spalling but Inherent Stiffness
0.11<D<04 REPAIRABLE _
' Remains.
04<D<0.77 | IRREPAIRABLE Still Standing but Failure Imminent
D >0.77 COLLAPSE Total or Partial Collapse of Building.
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2.6.2 Modified Park and Ang Model in IDARC

A slight modification was introduced to the original model by Kunnath et
al. [3] in the third version of IDARC since the relation between element, story or
top story deformations with the local plastic rotations is difficult to establish due
to the inelastic response is confined by plastic regions near the ends of some

members.

The modified version is given by Equation 2.10.

E, (2.10)

Where 6, is the maximum rotation attained during the loading history; 6, is the
ultimate rotation capacity; 6, is the recoverable rotation when unloading; M, is the
yield moment; and Ej is the dissipated energy in the section. The element damage

index is then selected as the largest damage index of the end sections.

Story level damage indices should be calculated to obtain an overall

structural damage indices.

Dy = Z(’% ,-) ‘(Di)

comp compnent (2.11)

Ei
(ﬂ ,‘)camponen! h (—z—ijcompanenl (212)

D overall — Z (/1 ,')S,o,ey (Di )slorey (2 1 3)

E!'
(2, ), = [_Z—EJ,, (2.14)

Where A; are the energy weighting factors E; are the total energy absorbed by the

component of storey "1 ".
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2.7 Program Input

The structural parameters are supplied to the program by a text file. These
parameters include the shape of the structure, concrete and reinforcements
properties, parameters that define the hysteretic behaviour of cross-sections,
column, beam, shear wall and edge column parameters, dynamic analysis l

parameters, earthquake ground motion parameters etc.

2.7.1 Concrete Parameters

User should enter the parameters that define the stress-strain relation of
concrete. But in the technical report, it is not clear whether the unconfined or the
confined parameters of the concrete should be entered as input to the program. In
Section 3.2.2.2 the model that is used is explained. According to this definition

the stress-strain diagram for unconfined concrete is given by Figure 2.9.

Stress,c
FC—+
ECN=FCXZF
EC
| * Strain, e
! |
EPSO EPSU

Figure 2.9 Stress-strain curve for unconfined concrete used in IDARC
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Since the confinement ratio does not significantly affect the maximum
compressive stress, it is considered to influence only the ultimate strain, which is

defined by the ZF factor.

The parameters for the input are explained in the technical report. In this
part it is stated that “EPSU and ZF are derived from equation (3.12) and depends
on section data”. This is done if EPSU and ZF are given as zero by the user. This
means that EPSU may be dependent on the horizontal reinforcement properties
although it seems to be a parameter for unconfined concrete in the figures Fig.3.8
and Fig. A.3 of the report. The case studies supplied by the report are examined to
understand the value of EPSU. In some case studies EPSU is given directly while
the in the others it is calculated by IDARC. Table 2.3 gives the values for EPSU.
Since the envelope properties of the sections are given by the user inputs, EPSU is

not given directly.

Table 2.3 EPSU values for some case studies

CASE . DEFAULT(D) OR
STUDY USER SPECIFIED(U)
1 0.03 D
3 0.012 U
6-NS 0.004 U

As can be seen, EPSU is taken in a range of 0.004-0.03. But the well
known value of EPSU is 0.003.

2.7.2 Reinforcement Properties

Reinforcement properties are defined by entering the parameters of the

stress-strain curve shown in Figure 2.10.

17



Stress, o

FSU—-

ESH

FS

\ ES Strain,e
|

|
SYM EPSH

Figure 2.10 Stress-strain curve for steel used in IDARC

2.7.3 Column Parameters

IDARC permits to define only two types of steel layers as shown in Figure
2.11. The other column parameters such as dimensions, hoop bar parameters and
the effectiveness of the hoop bar for different arrangements of stirrups are also

given. All of these parameters are specified for the top and bottom cross-sections.

b

:];: As

Figure 2.11 Vertical steel definition of column element in IDARC
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2.7.4 Beam Parameters

The sectional properties of the first and second node of a beam element are
entered. Hence if the steel areas are not the same throughout the element one can

divide this beam element into several beam elements.

2.7.5 Shear Wall and Edge Column Parameters

Other than beam and column elements, steel parameters are entered as
steel ratios in shear wall elements. Shear wall cross section can be divided into

sub-regions to define the variations in steel ratios.

Edge columns are used to model the columns on the right and left side of
the shear wall. As in shear walls, steel parameters are supplied as steel ratios for

the edge column elements.

2.7.6 Mass

Masses are defined as nodal masses through out each storey. Instead of
entering the mass values the user should enter the weight correspondence of these

masses.

2.7.7 Dynamic Analysis

The ground acceleration data is given in a separate file and the parameters
such as the time interval and number of data that will be considered are entered in
the input file. This ground acceleration can be scaled to achieve specified peak
ground acceleration. The ground acceleration between two data is assumed to be

varying linearly (Figure 2.12)
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Figure 2.12 Linear change of ground acceleration

In the report it is noted that nonlinear analysis is sensitive to the choice of
time step for response analysis. A value of 0.005 sec is suggested for typical
buildings. It is suggested that a smaller value should be used if large amount of
changes is expected in the stiffness of the elements. Also it is noted that improper
choice for this value may yield numerical instabilities which will give large

damage values (D>>3).

There are three options for the type of damping: mass proportional,

stiffness proportional and Rayleigh damping. Damping matrix is expressed as

[ClFam[M] + ox[K] . (2.15)

The expressions for o, ok are given in Table 2. o; is the circular frequency of

mode 7 and & 1s the critical damping which is same for all modes.
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Table 2.4 Parameters for damping matrices

Damping oM ok
Mass proportional 2Em; 0
Stiffness proportional 0 28 w;
Rayleigh (2Ewim;)/(w;+ ;) (28)/(w; + w3)
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CHAPTER 3

ARTIFICIAL NEURAL NETWORKS AND
APPLICATIONS TO DAMAGE ANALYSIS

3.1 General

A neural network can be defined as a simplified mathematical model of
human nervous system, which has the ability of modifying itself according to past
experiences to give reasonable answers for the problems that it never faced before.

A more technical definition is given by Haykin [2]:

“A neural network is a massively parallel distributed processor that has a
natural propensity for storing experimental knowledge and making it available for
use. It resembles the brain in two respects:

1. Knowledge is acquired by the network through a learning process.
2. Interneuron connection strengths known as synaptic weights are used to store

knowledge.”

As can be understood from the above definitions, first a model of human
nervous system unit, namely neuron, is formed, then using this primary unit a
network of units that are interconnected are established. This network is then
trained by special algorithms, called learning algorithms, using a pre-calculated or
pre-observed set of well-analysed data. After these processes, the network is
expected to give reasonable results for the problems that are not included in the

set that is used to train the network.

In this chapter, a basis for the neural networks will be given first. Then
well known neural network architectures will be explained. Back-propagation

algorithm, which is the most popular algorithm in structural engineering research
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field, will be explained in detail. Matrix representation of this algorithm will be

given. And finally another network architecture will be introduced.

3.2 Basic Unit: Neuron

Consider the equation defined by,

ax+by+6=0 (3.1)

The line and the regions defined by this equation will be as in Figure 3.1

Ay
-8a \ ax+by+6>0
REGION A
ax+by+6 <0
] > 7
-d/b
REGION B ax+by+6=0

Figure 3.1 Line défined by ax + by + §=0

Now consider that we have some (x,y) pairs at hand, assuming that none
of them coincides with the line defined by ax + by + 6= 0, we want to determine
the region that these pairs belong to. A function defined by the Figure 3.2 can
readily do this job.
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Figure 3.2 A simple model for the ax + by + 8= 0 equation

In Figure 3.2 a, b, 0 are known values of the equation. The function

represented by Z is defined as:

+1, t<0

2 ={—1, t>0

The model works as follows:

1. Multiply the inputs with the corresponding weights: ax, by, 16,

i

Sum all the values obtained in Step 1: ax + by + 6

Evaluate the function f(¢): f(ax + by + )

If he result turns out to be +1 this pair is in region A, otherwise it is in B.

(3.2)

Now consider the reverse problem: If the pairs and the regions they belong

to are given, will it be possible to find the parameters that define the equation

ax + by + 6= 0 namely a, b, 6? Consider Figure 3.3 for the answer of this

problem.
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+:REGION A % : REGION B

Figure 3.3 Reverse problem of region separation

The question is simple to understand: Can we separate these two types of
data by drawing a linear line? It is easy to see that the answer for this problem is
not unique. One can draw several lines those separates two types of data with a

ruler as shown in Figure 3.4. Every line will have different values of @, b, 6.

+:REGION A x : REGION B

Figure 3.4 Some of the solutions for the separation problem
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This problem is one of the basic problems which artificial neural networks
deal with. The mathematical model defined by Figure 3.2 is the basic unit of
artificial neural networks, and is called neuron. The parameters x, y are the inputs
for this neuron. Actually the number of inputs need not to be two for a neuron
which is dependent on the type of the problem. The parameters a, b are called

synaptic weights. @ is called bias, which will be explained later.

In this model inputs are multiplied with the corresponding weights to be
collected in a pool. Every input will effect the value of the pool as much as its
weight. If its weight is small, its effect on the pool will be small and vice versa.

This is why the parameters a, b are called as weights.

Let us examine the function f ( 7 ) shown in figure 3.5a. In neural
networks, the function that takes inputs multiplied with weights as parameter and
fires the output of the neuron is called activation function. In our specific example
the activation function is a threshold function, which fires 1 when the input
exceeds zero. In neural networks several activation functions are used for different

types of problems. A list of activation functions is presented in Figure 3.6.

At first glance the problem introduced above may seem very simple. After
giving a brief explanation how neural networks deal with this simple problem,
which is the general approach of neural networks, more difficult problems that
can not be solved with a ruler will be implemented. To clarify the problem, let us

give some numerical values as shown in Table 3.1(See also Figure 3.6).

Table 3.1 Numerical data for the separation problem

X y Region
1 1 B
1 2 B
2 1 B
3 2 A
3 3 A
4 2 A
4 3 A
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Figure 3.5 Activation functions a) bipolar output threshold function, b)binary
output threshold function, ¢) sigmoid function, d) tangential sigmoid function,
e) Gaussian function
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Figure 3.6 Graphical representation of the numerical problem

Now we have the input pairs and their regions at hand and a neuron which
we are expecting to implement this problem. The unknowns are a, b, and 6. The
procedure will be as follows: First we will select random values, which will be in
the range of (-1,1), for a, b, and 6. We will use the binary output activation
function. If the input results a value of 1, we will say that it belongs to one of the
regions, say Region A, and if it comes out to be 0, we will say that it belongs to
Region B. Hence the input output set for our simple neuron shown by Figure 3.2

will be as given in Table 3.2:

Table 3.2 Input-output set for the separation problem

Y Output
0

B W W RN/ | e
W N W= D
— = = OO
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Of course for the random values of a, b, and 6, our simple neuron will not
give the expected outputs. Hence our initial random weights should be updated so
that the neuron will give the desired outputs. The algorithm that updates the
weights is based on a gradient-descent error minimisation process. Let us call the
expected output of the neuron as o, and the neuron output as o’. Hence the error of

the neuron will be:
e=(0-0") 3.3)

But the neuron output o’ = ax + by + 8, hence the error will be a function of g, b,
and @ for the known values of x, y and o. Hence we are searching for the values
of a, b, and @ that minimise the error e. The minimum error can be reached by
taking the derivative of the error and using the derivative to reach a local or a
global minimum of error (Figure 3.7). Every weight will be updated using this

derivative.

e A

Figure 3.7 The graph of error function of the single neuron

In Figure 3.7, point A represents the error due to the initial random values

of weights. The algorithm will start at this point and will reach a neighbourhood
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of point B, which is a minimum. During this algorithm all of inputs will be
introduced one by one and the corresponding error and derivative will be
estimated. As can be seen from the graph even at the end of the algorithm there
will retain an error. Hence the algorithm guarantees reaching a minimum but does
not guarantees that the error will be zero. This discussion brings the problem of

local and global minimum, which will be explained, later in this chapter.

Our algorithm will find a set of weights namely a, » and 6, which
separates these two regions. The solution of this problem will not be unique.
Hence the algorithm will yield a different set of weights for different sets of initial

random weights,

Now consider a much more complex problem shown in Figure 3.8. As can
be seen separating these two types of data by drawing a linear line is impossible.
For this kind of problem, which is not linearly separable, several interconnected
units are used. Algorithm for this kind of classification problem will be given in

the following sections.

Figure 3.8 A more complex classification problem
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Figure 3.9 shows the more general form of a unit. As can be seen the number of
inputs is not two and the input for bias can be —1. These units are the building

units of multilayer networks.

Figure 3.9 General form of a neuron

3.3 Multilayer Layer Neural Networks

Multilayer neural networks implement more complex problems that can
not be solved with a single unit. These networks are formed by layers of units as
shown in Figure 3.10. The first layer is called the input layer, which includes only
the inputs. In the previous examples the number of inputs was two, but in this case
number of inputs is n. Layer that gives the output is called the output layer.
Different than a simple neuron, the number of outputs should not need to be one.
Let us call the number of the outputs as m. Layers that lie between the input and
the output layer are called the hidden layers. The number of the units in these
layers is determined according to the type of the problem. The layers are
connected by the weights. As in the previous example, the inputs are introduced to
the units of the first layer. The outputs of this layer will be inputs for the second
layer and the same computations will be applied for the third layer. This process is

called as forward propagation of the input data.
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Figure 3.10 Multilayer network with two hidden layers

The complex problem explained in the previous part can be implemented
easily by a multilayer network with one hidden layer. The input layer will have
three elements that corresponds to (x, y) pairs of the training set and —1 or 1 for
the bias input. The last element of the hidden layers should be —1 or 1 also. Output
layer will have two elements. Actually it can have one element for our specific
problem as done in the previous part, but to give a different architecture different
than the one-neuron example; output layer with two elements will be used. The
sigmoid activation function will be employed for all units. The procedure will be
as follows: First, random weights will be generated. Second an input pair (x,y) and
its region will be selected randomly. We are expecting to obtain an output of (1,0)
for the pairs that belong to Region A, and (0,1) for Region B. Inputs will be
introduced to the network and two outputs will be estimated. But the output of the

network will not give the correct result at the first forward propagation since it

used a random set of weights. Hence if the output of the network is (s,?), the.error . . .+ . .-
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will be (1-s,—f) if the introduced pair belongs to Region A and (-s,1-f) if it
belongs to region B. Then the weights are updated by an algorithm called as back-
propagation in which the derivative of the error function is used. This algorithm
will be explained in the next part. This process is repeated for the other input pairs

until a permissible error is reached.

Multilayer networks and back-propagation training has been proved to be
a good classifier for more than two patterns. The ability of implementing pattern
classification problems of these networks comes from their massively parallel-
distributed structure and the nonlinear behaviour of the units and hence of the

whole system.

A multilayer network can be visualised as a nonlinear mapping device that
maps n-dimensional input space to m-dimensional output space. Hence it can be
used not only for classification problems but also for n-dimensional interpolation
and extrapolation problems. For example let us consider a nonlinear function, f{x),

with (x, f{x)) pairs given in Table3.3 (see also Figure 3.11).

Table 3 Input-output set for the interpolation problem

fx)
8
-1
~22
—49
52
23

AW = O

Several methods can be utilised to make a nonlinear interpolation of this
problem. A multilayer neural network will do the same job. For example it will

implement the above data as in Figure 3.12.

The shape of the interpolation is highly dependent on the parameters of the
neural network such as the number of hidden layers, number of neurons,

activation function used etc. These parameters affect the performance of the
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system for all kind of neural networks. The best model should be determined after

testing of several different models.

60 4

40 1

20 : n
[ X
fix} © - y . . ' —
: i 1 2 3 4 5 6
-20 | -

.40 -

-60 4

Figure 3.11 Graph of input-output set of the interpolation problem

60

f(x)

Figure 3.12 Interpolation done by a multilayer neural network -
3.3.1 Back-propagation Algorithm

In this part the notation and representation of basic back-propagation
algorithm will be given first. Second the matrix representation will be introduced.

Finally some remarks will be given for the performance of the network.
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3.3.1.1 Notation

Since the algorithm applies to all layers of the multilayer networks, the

notation will be shown between two layers only.

D

X;a -V

First Second
layer layer

Figure 3.13 Notation for any two layers of the multilayer networks

The first layer can be the input layer or an output of the previous hidden layer.
The second layer can be the output layer or an input for the next layer.
A(t) denotes the value of 4 at iteration ¢

L is the number of the layers including the input and output layer.

AN I e

Weight wy(r) is the synaptic weight connecting the output of the neuron 7 in

the first layer to the input of neuronj in the second layer.
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6.  Aw(t) is the weight correction applied to weight Wil(1).

7. The expected output of the j’th term of the output layer is d; .
8. The i'th element of the input vector that is randomly selected from the training
set is denoted by x(7).

9. The neural network output is given as y (7).

10. The sum of the squared errors is denoted by &(7).

11. Learning rate is denoted by 7.
12. Momentum term is given as .

13. 5,"‘ is the error vector for the k’th layer

3.3.1.2 Algorithm

Since the partial derivative of the error function with respect to weights
will be computed, continuous differentiable activation functions should be used.
Hence back-propagation algorithm can not be applied to networks with binary and
bipolar output threshold activation functions. Actually for these type of networks
several training algorithms have been developed such as the perceptron learning
rule. Algorithm will be given for the sigmoid activation function. One can easily
extend the algorithm for other differentiable functions keeping in mind that
different type of activation functions are used for different type of problems. The

sigmoid function is given by,

1
l+e™

f(x)=

(3.4)

where a is a constant. The graph of this function is given for a = 1,2,3 in Figure
3.13. As can be seen when a tends to infinity, sigmoid function approaches to
behave as a binary output threshold activation function. Derivative of sigmoid

function will be

z ae"ﬂ.\’

¢ 1+e™

- = f@- )] (3)
X
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Figure 3.14 Sigmoid activation function

One iteration of the algorithm has basically two phases: forward

propagation and back-propagation.

Forward propagation:

1. Choose an input-output vector pair from the training set. This pair can be
selected randomly or in a specific range.

2. Generate random values for the weights. The range for the random weights
can change from [-0.1,0.1] to [-1.0,1.0]. It is better to determine the range after
some trials.

3. Introduce the input vector x; to the network through the input layer and obtain
the output of the network, y;. This output will be different from the expected

output d;. Hence the error function will be
EW) =% 2(di-y) (3.6)

Back-propagation:

1. Calculate the error vector of the output layer:

§O =3O [ 1=y 11 d@) -0 ] 3.7)
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2. Calculate the weight correction for the weights between the (L—1)™ layer and

the output layer(According to Figure 3.13 these are first and second layer

respectively).
Awyty=n 8O x() (3.8)
3. Update the weights between the (L-1)" layer and the output layer

W,'j(l‘ +1) = M’,'j(t) + AM’,‘j(l‘) (3.9)
4. Calculate the error vector of the (L-1)" layer:

&7ty =x(0) [ 1 =540 Ywy 67) (3.10)

here the weights, w; are the weights between the (L-1)™ layer and the output
layer.

5. Update the weights between (L-2)" layer and (L-1)™ layer as done in step 2
and step 3 until the first and second layer correspond to input and second layer of

the network.

Forward propagation and back-propagation are done until a permissible
error is reached. Learning rate in step 2 is an important parameter that effects the
performance of the network. The learning can gain speed with a term called

momentum term. In this case the weight update will be as follows:

Wij(t +1)= ‘Wij(t) + AWU(t) +a AW,‘j(f -1) (3.11)

Discussion on learning rate and momentum term will be given later. Now
the matrix form the algorithm will be given to visualise the procedure better. An

L1-L2-13-L4 network will be used. Here L1 is the input vector size including
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the bias input, —1 and L4 is the output vector size. L2 and L3 are the number of

neurons in the second and third layer, respectively including bias inputs. The

architecture will be in Figure 3.14

X2fL21 l X2/L2} l X3[L3A ' X1
—» > —»

—p

—»
| 121121 13(L3Y | 141141

i

WIIL2IL1 W2IL31fL2] W3IL4L3]

Figure 3.15 Notation for multilayer networks for matrix representation

In Figure 3.15 values in brackets show the dimension of the vectors and matrices.

Forward propagation will proceed as follows:

R=WixXl  X2=/12)
I3=W2x X2, X3 =A13) (3.12)
I4=W3 x X3, X4 =f14)

Back-propagation will be

3.13
[D3]L4x1 = [X4]L4xl . [1 - X4]L4x1 ¢ [D - X4]L4x] ( )
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[de?’]L‘%xLB = [D3]L4xl X [X3]1><L3 (3.14)

[D2],,,, = [X3],,, o[- X3),., o 73], x[D3), o0 | (3.15)
[@W 2,505 = D250 x[X 2], (3.16)
[D1],, = (X200 o[1- X2],50 @ [W2]5,.5 x[D2),0 ] (3.17)
[@71),501 = (D20 x [X1]s (3.18)

In this notation « (dot) means the dot product of the two vectors, and X

means the matrix multiplication. It should be noted that the last elements of the

layers other than the output layer are not neurons. They have the value —1.

3.3.1.3 Performance of the Algorithm

Back-propagation algorithm is a gradient descent algorithm. It starts from
a point on the error surface and it goes downwards on this surface. When it
reaches a minimum, it will stick to this minimum. Hence if the permissible error is
smaller then this minimum, algorithm will not converge. This should be checked

throughout the iterations.

The minimum value of the error that the algorithm reaches may not be the
global minimum. This is an expected problem since the algorithm is a gradient
descent algorithm. To eliminate this problem the leamning rate should be changed

adaptively. The general approach for this is as follows:

1. Every weight should have its own learning rate parameter.
2. When the derivative of the error function has the same sign for several

iterations, the learning rate should be increased.
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3. When the derivative of the error function do not follow a regular sign change,

the learning rate should be decreased.

Small learning rate means small steps on the error surface, and vice versa.
Other methods such as stochastic algorithms with simulated annealing, Boltzman
machine are used to find the global minimum, which are more powerful but more

sophisticated.

The momentum term behaves somewhat like an adaptive learning rate
since it accounts for the previous weight update. But the momentum constant
should be selected after some experimental runs as in learning rate case. The
speed of the back-propagation can be increased by simple modifications. Some
algorithms obtained after these modifications are delta-bar-delta rule, Rprop,
Qprop, QRprop etc. Fuzzy control of learning rate is another method to accelerate

the algorithm.

It should be noted that performance of the algorithm is just a parameter for
the performance of the network. Performance of the network depends on several

other parameters.

3.3.2 Performance of the Multilayer Networks

It is expected from the network to give reasonable results for the problems
that it has never faced before, i.e. the problems that do not exist in the training set.
For example, the interpolation of the training set given in Table 3.1 may be as in
Figure 3.16. As can be seen easily the nonlinearity given by the network is very
high. The reason of this nonlinearity is related with the number of hidden neurons.
It is observed from the past experience that the nonlinearity increases with the

number of hidden neurons.
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Figure 3.16 Another nonlinear approximation done by a network

The extrapolation is another measure for the performance of the network.
It is expected to have reasonable output for the input that is not in the range of

training set.

The above problems are called generalisation problems. Figure 3.17 gives
a mathematical representation for the generalisation problem. In this figure X
represents the input space for the physical system. R is a subspace in which the
input and the output variables obey a set of relations. From this set one can select
two subspaces namely learning (training) and testing set abbreviated as L and R,
respectively. We use the training set to train the network hence the testing set is
not introduced to the network. The performance of the network will be measured

by testing the network with the testing set,

The most important parameters that effect the generalisation of the
networks are first the size and the efficiency of the training set, second the
architecture of the network, third the learning algorithm used, and finally the
complexity of the physical problem.
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Figure 3.17 Subspaces of the problem input space

The training set should include as different ranges of input subspace, R as
possible. But if the learning set is fixed other parameters determine the
performance of the network. It is advised that all of these parameters should be
tested to obtain better performance. This is why the caution that not every network

will give good performance for every kind of problem is very important.

3.4 Unsupervised Learning and Kohonen Network

In back-propagation algorithm we used a predefined input-output set
namely training set to train the network. The algorithm compares the actual output
and the network output to update the weights. Hence the training occurs in control
of a teacher: output. The network output is forced to be the actual output. This
type of leaming is called supervised learning. In unsupervised leaming the
characteristics of the input data are determined without using such a teacher. In
this type of learning the network output is not forced to be the actual output. The
network organises itself according the characteristics of the input data. In
Kohonen network, which is one of the unsupervised algorithms, self-organisation

is observed on the two-dimensional output layer called Kohonen layer.
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A simple Kohonen network consist of an input layer and a two-

dimensional output layer as shown in Figure 3.18

Input layer Kohonen layer
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Figure 3.18 Kohonen network

The principal of the Kohonen network is to determine a winning neuron on
the output layer when an input pattern is introduced to the network. The criterion
to determine the winning neuron may be Euclidean distance between the input
vector and the weight vector coming to that neuron. Euclidean distance between

any two vectors x and y is defined as

dy = [Z(xi —y,-)z]”2 (3.19)

The winning neuron in the output layer will be the one with minimum Euclidean
distance. The physical meaning of this criterion can be visualised by the dot
product of the input and weight vector. If the Euclidean distance is smaller, the

dot product of the two vectors will be larger as shown in Figure 3.19.
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Figure 3.19 Euclidean distance between two vectors

After selecting the winning neuron, the weights coming to this neuron are
updated as to increase the dot product of the input and the weight vectors. The

update rule is given as follows:

w(t+1) = w(t) + n[x - w()] (3.20)

In practice this update is not done not only for the winning neuron but also
for a specified neighbourhood of that neuron as shown in Figure 3.20. The
boundaries of this neighbourhood will shrink with iteration until it only includes

the winning neuron.

Different than back-propagation algorithm, the number of iterations is not
decided by a permissible error since there is no term of error. The system is self-
organising. After the training process, every input pattern will map an output
neuron in the output layer. This final vision of mapping is called future map. The
system is then ready to map any other pattern that was not used to form the future

map.
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Kohonen layer
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Figure 3.20 Square neighbourhoods of the winning neuron

3.5 Closing Remarks

Although back-propagation is the most popular algorithm for learning
several other algorithms that show better performance are developed for
multilayer networks such as CMAC. Pure back propagation algorithm may not be
efficient for most problems. Alternate algorithms or modifications of back-

propagation may work well for this type of problems.
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CHAPTER 4

CASE STUDIES SOLVED WITH IDARC

4.1 General

As the first phase of this study, three frames and one single-degree-of
freedom system are analysed with IDARC to observe the effect of different
characteristics of structural systems and earthquakes on the structural damage. In
this chapter, a frame with shear walls was analysed with IDARC (FR1). Due to
some problems faced with IDARC, a simpler wire-frame, which is designed
according to TS-500, EUROCODE?2 and ACI is analysed (FR2). Then a frame
(FR3) similar to FR2 is analysed for the next part of the study. To check some
numerical errors occurred in IDARC a single degree of system is analysed also

(Table 4.1).

Table 4.1 Case studies

NAME DESIGN SHEAR WALL
FR1 TS-500 EXISTS
SDOF NOT DESIGNED
FR2 TS-500, EUROCODE-2 o
ACI
FR3 NOT DESIGNED NO

4.2 Case 1: FR1

The frame FR1 is a four-storey, four bay frame as shown in Figure 4.2.

This frame is one of the frames of a 3D structure (Figure4.1). This structure is
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analysed with SAP90 and designed according to TS-500 and one of the frames is

isolated for analyses.

V4
) : { N
Ob .
4 - SHAVE
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Figure 4.1 3D building employed for FR1
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Figure 4.2 General view of FR1
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Dimensions of elements of FR1 are given in Table 4.2.

Table 4.2 Element properties of FR1

Column dimensions (mm) 400x400

Beam dimensions (mm) 500x300
Shear wall dimensions (mm) 5600x200 and 5600x300

Edge column dimensions (mm) 400x400

4.2.1 Columns

All column elements used in FR1 are the same. Typical column is
400x400mm and 3m in height with 250mm rigid zones at top and bottom, except
that the columns in the first storey are 2750mm in height and they have no rigid
zone at bottom. The initial axial loads on the columns are given in Table 4.3.
Hoop bar diameter is 14mm with spacing of 100mm. The effectiveness of hoop
bar is taken as 0.66. The area of vertical steel on one face is 942.5mm?. Hence the

steel ratio is 0.0118.

4.2.2 Beams

Every parameter of the beam elements used in FR1 is the same except the
vertical steel areas. The top and bottom steel areas are given in Table 4.4. One
beam element is defined as two beam elements to define the steel areas at the mid-
section. Hence left parts of beams have 200mm rigid zone on the left and no rigid
zone on the right while right parts no rigid zone on the left and 200mm ri gid zone
on the right and both of them are 3000mm in length. Hoop bar diameter is 14mm
with 100mm spacing at the joints and 150mm spacing at the mid-section of the

beams.
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Table 4.3 Axial loads on columns of FR1

Columns Axial Load (kN) Columns Axial Load (kN)
1 620 7 284
2 1030 8 490
3 620 9 284
4 448 10 120
5 760 11 220
6 448 12 120
Table 4.4 Beam steel areas of FR1 (top/bottom)

BEAM NO LEFT (mm’) MIDDLE (mm®) | RIGHT (inm?)
1 1592/904 760/1357 2044/1017
2 2044/1017 760/1357 1972/904
3 2116/1058 760/1357 1840/904
4 1972/904 760/1357 1840/904
5 1840/904 760/1357 2568/1284
6 2568/1284 760/1357 1972/904
7 2352/1212 760/1357 1978/904
8 1978/904 760/1357 2805/1412
9 2805/1412 760/1357 2228/1105
10 1614/904 760/1357 1664/904
11 1664/904 760/1357 2805/1412
12 2805/1412 760/1357 1592/904

4.2.3 Shear walls

Shear walls are defined as 5600x200mm, which is actually an unpractical

value since the first aim was to develop practice with IDARC. Damage indices
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came out to be very large values and shear wall dimensions increased to
5600x300mm. This is a large value. As explained in Chapter 2, shear wall steel
parameters are given as steel ratios in IDARC. Three subregions are used for this
purpose (Figure 4.3). The axial loads, vertical and horizontal steel ratios and

heights of the shear walls are given in Table 4.5.

= Edge columns —=

R1 R2 R1

1.25m 3.1m 1.26m

Figure 4.3 Shear wall regions of FR1

Table 4.5 Shear wall properties of FR1

Shear Wall | A. Load (kN) R2 (p/pon) R1 (pv/pn) Height (mm)
1 1900 0.005/0.007 0.0122/0.014 2750
2 1400 0.005/0.007 0.0122/0.014 3000
3 890 0.005/0.007 0.0122/0.014 3000
4 700 0.005/0.007 0.0122/0.014 3000
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4.2.4 Edge Columns

Edge columns are 400x400mm and other properties for one edge column

are given in Table 4.6.

Table 4.6 Edge column properties of FR1

Storey Axial Load (kN) | Steel Area (mm°) Height (mm)
1 200 1885 2750
2 145 1885 3000
3 95 1885 3000
4 50 1885 3000
4.2.5 Masses

Masses are given as nodal weights at the joints at each storey. The values

of masses are given in Table 4.7.

Table 4.7 Nodal weights of FR1 at the joints (from left to right)

Storey Joint 1(kN) | Joint 2(kN) | Joint 3(kN) | Joint 4(kN) | Joint S(kN)
1,2,3 164 270 305 305 164
4 121.4 222.2 238.7 238.7 121.4

4.2.6 Concrete and Steel Properties

Unconfined concrete strength is taken as 0.025 kN/mm?, and strain at max

compression is 0.2% while the ultimate strain is 0.3%. Yield and ultimate strength

of steel are 0.22 kN/mm? and 0.34 kN/mm?, respectively.
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4.2.7. Dynamic Analysis Options
The time interval for analysis is taken as 0.001sec. El Centro — Imperial

Valley Earthquake data is used as ground motion data. Earthquake properties are

given in Table 4.6. Mass proportional damping is used with 2% critical damping.

Table 4.8 Propérties of El Centro Earthquake

PGA(mm/s) 231.44
PGV(mm/s) 65.87
PGD(mm) 29.62

Time Interval (sec) 0.01
Effective Duration(sec) 11.28
V/A(sec) 0.2846

Data 3000

The parameters examined in the first frame are peak ground acceleration
(PGA), shear wall area ratio (SWAR), shear wall steel ratio (SWSR), column area
ratio (CAR), column steel ratio (CSR), storey height (SH), damping ratio (DR)
and damping type. Due to problems occurred during analysis, input files are

prepared for kips-inch system of units also

SWAR is defined by the ratio of shear wall area to the effective plan area
of the building (Figure 4.4). For 5600x300 shear wall SWAR is 0.009. CAR is
calculated similar to SWAR. Although in the graphs presented later SWSR is the
vertical steel ratio value, horizontal steel ratio is changed according the percent
change in the horizontal steel. In the following graphs abbreviations are as
follows: RZ is Rayleigh damping, SP is stiffness proportional damping, MP is
mass proportional damping, k-i is kips-inch system of units, k-mm, is kKN-mm

system of units.
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PLAN VIEW
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SWAR=Agw/AroraL

24m \ ArorA1=360m’

Figure 4.4 Definition of SWAR

4.2.8 Results

The points marked with circle represents huge amounts of damage value
which results from the instabilities of the IDARC, but just to visualise the

behaviour, their damage value is shown as 1.

Damage vs PGA (FR1)
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Figure 4.5 Effect of PGA on damage of FR1
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Figure 4.7 Effect of SWSR on damage of FR1
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CSR vs Damage
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Figure 4.9 Effect of CAR on Damage of FR1
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SH vs Damage
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4.3 Case 2: SDOF

Although it is expected that in the analyses of FR1 the PGA-DI graphs for
both system of units to be same, they are very different as shown in Figure 4.15.
A simple SDOF system as shown in Figure 4.15 is analysed to see the difference.

Two graphs for the SDOF system are presented here.
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Figure 4.17 Properties of SDOF
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Figure 4.18 Effect of PGA on damage of SDOF for two system of units
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Figure 4.19 Effect of PGA on damage of SDOF for two damping types

4.4 Case 3: FR2

The frame FR2 is a five-storey, four bay frame as shown in Figure 4.20. T
This frame is designed according to TS-500, EUROCODE-2, ACI specifications.

4.4.1 Columns

All column elements used are the same. Typical column is 19.68x19.68in
and 118.1in in height with 9.84in rigid zones at top and bottom, except the
columns in the first storey they have no rigid zone at bottom. The initial axial
loads on the columns are given in Table 4.9. Hoop bar diameter is 0.47in with
spacing of 2.95in. The effectiveness of hoop bar is taken as 0.5. The area of

vertical steel on one face is 1.95in%. Hence the steel ratio is 0.010.
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Figure 4.20 General view of FR2
Table 4.9 Axial loads on columns of FR2
Column Axial Load(kips) Column Axial Load(kips)
1,21 141.19 6,11,16 274.5
2,22 121.4 7,12,17 219.76
3,23 91.05 8,13,18, 164.34
4,24 60.70 9,14,19 109.7
5,25 29.90 10,15,20 55.30

4.4.2 Beams

Every parameter of beams is the same except the vertical steel areas. The

top and the bottom steel areas are given in Table 4.10. One beam element is
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defined as two beam elements to define the steel areas at the mid-section. Hence
left parts of beams have 9.84 in rigid zone on the left and no rigid zone on the
right while right parts no rigid zone on the left and 98.4in rigid zone on the right
and both of them are 98.42 in in length. Hoop bar diameter is 0.39 in with 5.31 in
spacing throughout the beam.

Table 4.10 Beam steel areas of FR2 (top/bottom)

BEAM NO LEFT(in%) MIDDLE(in%) RIGHT(in%)
1,5,9,13,17 1.78/0.95 0.59/1.43 1.78/1.43
2,6,10,14,18 1.78/1.43 0.59/1.43 1.78/1.43
3,7,11,15,19 1.78/1.43 0.59/1.43 1.78/1.43
4,8,12,16,20 1.78/1.43 0.59/1.43 1.78/0.95

4.4.3 Masses

Masses are given as nodal weights at the joints at each storey. The values

of nodal weights are given in Table 4.10.

Table 4.11 Nodal weights of FR2 at the joints (from left to right)

Storey | Jlowy | J20m 3 T4 IS0 Jon) JT029 I8an) J9ax

1,2,34 11070 { 13.31 17.35 1331 17.35 13.31 17.35 13.31 10.70

5 7.83 | 1331 15.33 13.31 15.33 13.31 15.33 13.31 7.83

4.4.4 Concrete and Steel Properties

Unconfined concrete strength is taken as 2.9 kips/in®, and strain at max
compression is 0.2% while the ultimate strain is taken as 2.7% for columns and
1.2% for beams. Yield and ultimate strength of steel are 60.9 kips/in’, and 72.5

kips/in® respectively.
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4.4.5. Dynamic Analysis Options

The earthquake data used for FR2 is same as FRI namely El Centro
carthquake. The parameters examined in FR2 are peak ground acceleration
(PGA), column dimensions percent (CDP), column steel percent (CSP), beam
dimensions percent (BDP), beam steel percent (BSP), damping ratio (DR) and
mass percent (MP). The original structure assumed to be 100% and the changes
were done accordingly. For example 100% of CDP is 19.68x19.68in hence 80%

CDP is 15.74x15.74in column. The same rule applies to other parameters.

4.4.6 Results

PGA vs Damage (FR2)
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Figure 4.21 Effect of PGA on damage of FR2
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4.5 Case 4: FR3

The frame FR3 is a four-storey, four bay frame as shown in Figure 4.28.

200in 200in 200in 200in

120in

120in

120in

120in

Figure 4.28 General view of FR3

4.5.1 Columns

All column elements used are same. Typical column is 20x20in and 120in
in height with 10in rigid zones at top and bottom, except the columns in the first
storey they have no rigid zone at bottom. The initial axial loads on the columﬁs
are given in Table 4.12. Hoop bar diameter is 0.5in with spacing of 3in. The
effectiveness of hoop bar is taken as 0.5. The area of vertical steel on one face is

2in®. Hence the steel ratio is 0.010.
4.5.2 Beams

Every parameter of beams is same including the vertical steel areas. The
top and bottom steel areas for all of the beams is 1.5in’. Beam elements are 200in

in length and they have 10in rigid zones at both ends.
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Table 4.12 Axial loads on columns of FR3

Storey | Exterior(kips) Interior(kips)
1 75 110
2 55 80
3 35 50
4 15 20

4.5.3 Masses

Nodal weights are given as in Table 4.13.

Table 4.13 Nodal weights of FR3 at the joints

Storey Exterior(kips) Interior(kips)
1,2,3 20 30
4 15 20

4.5.4 Concrete and Steel Properties

Unconfined concrete strength is taken as 2.9 kips/in?, and strain at max

compression is 0.2% while the ultimate strain is taken as 3.0%. Yield and ultimate

strength of steel are 60.0 kips/in and 75.0 kips/in® respectively.

4.5.5. Dynamic Analysis Options

The earthquake data used for FR3 is same as FR1 and FR2. The

parameters examined in FR3 are same as in the previous case.
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4.5.6 Results

PGA vs Damage(FR3)
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Figure 4.29 Effect of PGA on damage of FR3
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Figure 4.30 Effect of CDP on damage of FR3
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CSP vs Damage
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Figure 4.32 Effect of BDP on damage of FR3
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Figure 4.34 Effect of DR on damage of FR3
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MP vs Damage
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4.6 Closing Remarks

The work done up to this point deals with the structural parameters. FR3 is
analysed for the earthquakes given in Table 4.13, but not significant correlation is
obtained for the parameters Ter, and V/A ratio. Hence the results will be only
given in tabular format. Actually for the neural network analysis it is better to

enlarge the training set by adding results of analysis of different earthquakes.

Table 4.14 Outputs for other earthquakes

EQ PGA(g) [PGV(m/s?)] PGD(m) | V/A(sec) Ter(sec) DI
ERZIN1.EQ 0.20 0.2614 0.0613 0.1331 7.44 0.030
SALVAD.EQ 0.20 0.2846 0.1033 0.1453 6.26 0.047
EMERVIL2.EQ | 0.20 0.3129 0.1045 0.1594 8.88 0.051
SANFER1.EQ 0.20 0.3812 0.2070 0.1944 21.68 0.058
TOKACHLEQ 0.20 0.4643 0.1132 0.2367 24.87 0.064

ERZIN1.EQ 0.30 0.3921 0.0920 0.133] 7.44 0.050
SALVAD.EQ 0.30 0.4269 0.1550 0.1453 6.26 0.070
EMERVIL2.EQ | 0.30 0.4693 0.1568 0.1594 8.88 0.096
SANFER1.EQ 0.30 0.5718 0.3105 0.1944 21.68 0.090
TOKACHIEQ 0.30 0.6965 0.1698 0.2367 24.87 0.108
ERZIN1.EQ 0.50 0.6536 0.1533 0.133] 7.44 0.107
SALVAD.EQ 0.50 0.7115 0.2584 0.1453 6.26 0.154
EMERVIL2.EQ | 0.50 0.7821 0.2614 0.1594 8.88 0.308
SANFER1.EQ 0.50 0.9531 0.5175 0.1944 21.68 0.226
TOKACHIEQ 0.50 1.1608 0.2830 0.2367 24.87 0.408
ERZIN1.EQ 0.70 0.9150 0.2146 0.133} 7.44 0.179
SALVAD.EQ 0.70 0.9961 0.3617 0.1453 6.26 0.326
EMERVIL2.EQ | 0.70 1.0950 0.3659 0.1594 8.88 0.766
SANFERL.EQ 0.70 1.3343 0.7245 0.1944 21.68 0.676
TOKACHLEQ 0.70 1.6252 0.3962 0.2367 24.87 0.726
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4.7 Discussion of Results
4.7.1 General

More than 2000 runs were made with IDARC. These runs show that the
software is very sensitive to changes in PGA and time interval for some case
studies. For example 0.01g change in PGA caused 0.1 change in damage indicia.

The reason for that is the collected error during the nonlinear analysis.

The software has several options for different parameters such as
hysteretic behaviour, concrete properties, damping, etc. The user should select the
proper combination for logical results. Experimental results can be utilised for this
purpose. For example the effectiveness of hoop bars of columns and damping type
may not reflect the actual behaviour of the hoop bars and dampihg. This will
increase the reliability of the results. In this study the aim was not obtain the exact
response of the structure but to obtain general trend of the damage and sets for
training and learning for neural network implementations. Hence the parameters

are not calibrated to obtain the exact response using experimental data.

Damage is observed to be very sensitive to the parameters for larger PGA.
This does not mean that the structure stays in its elastic range since for elastic
response the modified Park and Ang damage model will give zero damage
indices. Both mass and the column area have direct effect on the damage.
Assuming the flexibility of the structure for the horizontal degree of freedoms is
determined by columns, it is possible to take modal periods of the structure as the

most important parameter since the period of a SDOF system is estimated by

m
T=2m|— .
7 (4.1)

Where m is the nodal mass and k is the lateral stiffness. As in the Equation 4.1

period 1s proportional to the square root of mass and inversely proportional to the
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stiffness. In this respect beams has no direct effect on the lateral stiffness and
hence on the period since they have no axial degree of freedoms. From the above
discussion mass and elements that determine the lateral stiffness have direct effect

on the damage.

Mass proportional damping will not be modified during the analysis since
the mass is not changing during the analysis, but damping ratio should be lowered
considering the damage on the structural system. To take the effect lowered
damping ratio, stiffness proportional damping seems to be more logical to employ
since the stiffness matrix is modified during the analysis. In that case huge loss in
stiffness will yield huge loss in damping. Hence Rayleigh damping will be more
realistic to use. In the later parts, the specific observations for the case studies are

given.

4.7.2 FR1

Although it is expected to have a gradually increasing damage effect of
PGA on FRI, the effect of PGA is very irregular for the PGA>0.3g (Figure 4.5).
Several other analyses were done for different values of SWAR and time interval
of nonlinear dynamic analysis but the results were not satisfactory. The effect of
system of units can be observed from Figure 4.15. These improper results can be
observed for the Figures from 4.8 to 4.15 also. This is thought to be a result of
possible numerical instabilities resulting from the nonlinear analysis or the shear
wall modelling of IDARC. Figure 4.16 shows that shear wall is damaged more
when PGA is 0.25g. In literature there is not any reference that points to these

problems but several researchers reported these kind of errors in IDARC.
Although the results were not satisfactory, it is possible to observe that the

SWAR and SWSR are the most important parameters for damage. Another

interesting observation is that the effect of shear wall is so small when
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SWAR>0.006 and SWSR>0.01. Another point is when PGA>0.2g the damage
increased suddenly for small values of SWAR and SWSR (Figures 4.6, 4.7).

4.7.3 SDOF

Figure 4.18 shows that there is a possible error resulting from the system
of units in IDARC. Figure 4.19 shows that stiffness proportional damping
modelling causes more damage in SDOF. This is an expected result as told in

4.7.1.

4.7.4 FR2

Figures 4.22, 4.24, 4.25, 4.27 show that the design specifications supplied
the most economical designs for the PGA>0.2g. For PGA<0.3g, the effects of
column and beam parameters are negligible. Although damping should be an
effective parameter on damage, Figure 4.26 shows that damping has effected the
damage relatively small. The mass of the structure seems to be an important
parameter for PGA>0.2g. The additional mass caused more damage when
PGA>0.2g. The effect of the CSP is very negligible for all PGA values. The
structure should be examined for larger PGA values since a peak is observed for

PGA=0.4g.

4.7.5 FR3

Effect of CDP, CSP, DR, MP on damage increases with increasing PGA
especially for PGA>0.2g. The current design of FR3 seems to be very
economical. Effect of DR and MP is more clear in this structure. Figures 4.32,
4.33 show us that beam properties do not have a direct effect on damage, which is

concluded in 4.7.1 also. The effect of beams can be considered as the effect of
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ratio of column strength to beam strength or the occurrence of plastic hinges

during the loading. This should be investigated further.

Effect of the fundamental period and tip deflection of the structure is very

clear with the shown second order trend lines.
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CHAPTER 5

NEURAL NETWORK IMPLEMENTATION OF
DAMAGE ANALYSIS

5.1 General

In this chapter the data obtained in the previous study is used to train
multilayer networks using standard back-propagation algorithm. This part of the
study includes two types of implementation of neural networks. In the first part,
neural network is employed as a nonlinear interpolator to determine the damage
indices. For this purpose two training sets are composed. First set is composed of
84 input-output data while the second set is composed of 445 data. These sets are
obtained from the analysis of the frame FR3. Two different networks are obtained
using these two sets and they are tested for the systems that are not included in the
training sets. In the second part of the study, neural network is employed as
classifier. For this purpose only the first training set is utilised and the network is
tested for the second set. In the final part, how Kohonen networks can be used as a
classifier, will be explained. For this part of study, software called DAMAGE
written in Java 1.1.8 is used. Due to the nature of Java, first applets that run on

Internet, second frames that use Java virtual machine are created.

5.2 Obtaining the Training and Test Sets

As stated in Chapter 3, the efficiency of training set is very important for
the performance of neural network. It should be broad and the parameters should
define the physical system as efficiently as possible. With this respect the

following terms are considered as the inputs for the network.
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Peak Ground Acceleration, PGA: this is the most important parameter that effects

the damage

Peak Ground Velocity, PGV and Peak Ground Distance, PGD: These parameters

are used as the earthquake parameters but since they change with PGA, the effect
of these parameters is not expected to be visualised explicitly. One of the reasons
for this poor design is the lack of analysis for different earthquakes.

V/A ratio and Effective Duration of the Earthquake, Tefi: As for PGA and PGD,

these parameters are not studied successfully.

(The above parameters are earthquake characteristics. To study on the parameters
more successively more earthquake data should be used in the analysis stage.)
Fundamental Period of the Structure (T): This is the parameter that gives an idea
about the flexibility of the structure and hence is very important.

CDP. CSP, BDP and BSP These parameters do not directly effect the damage but

the behaviour of the structure (T), hence are used as parameters for the sets.
Damping: This parameter has a direct effect on the damage as an energy
dissipater.

Ratio of maximum tip deflection to height of structure (TD/H): This parameter
has been used as a measure on the damage, but to obtain this parameter a
nonlinear analysis should be made. This is a conflict since the main aim of neural
netwofks is to eliminate this nonlinear analysis stage. A more detailed discussion
will be given later.

Ratio of column strength to beam strength (CS/BS): This parameter is added in

the view of the results of Chapter 4. The yielding moment capacities are used for
CS/BS.

In additional to the above list, several other parameters can be used.
Parameters that can more efficiently identify the system may be used. But the aim
of the study is to provide an understanding of neural networks and possible

extrapolations about the future research.

The total number of analysis done on FR3 was 445. 84 of them are

selected randomly to form the first training set. The remaining data formed the
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test set for the first network. The second training set is the whole 445 data. The
test set of this network is formed by additional analysis of FR3.

The training sets should be processed before starting the training. In this
process the inputs and the outputs are scaled according to maximum and

minimum values of that parameter, The following relation is used for scaling

A~S=L+(H-L)XW (5.1)

min
where L and H are the lower and the upper limits for the scaled data, Xmax and xmin
are the maximum and the minimum values of the parameter, respectively. The

maximum and minimum values of the parameters are given in Table 5.1. L and H

values are given in Table 5.2.

Table 5.1 Maximum and minimum values of the parameters

Parameter Minimum Maximum
PGA(g) 0.2 0.8
PGV(n/s) 0.3921 2.2329
PGD(m) 0.092 1.0041
V/A(s) 0.1331 0.2846
Tert(s) 6.26 24.87
T(s) 0.33 0.61
CDP(%) 70 130
CSP(%) 70 130
BDP(%) 60 130
BSP(%) 60 130
DR(% Cr) 2 8
MP(%) 70 130
TD/H 0.0014517 0.0336946
CS/BS 1.234 3.339
DI 0.032 0.766
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Table 5.2 L and H values for the scaling process

Parameter L H
Input -0.8 0.9
Output 0.032 1.0

The reason why the L and H parameters are chosen as in Table 5.2, is
related with the choice of the activation function used in the network. Several tests
are done to find to efficient activation function and the L and H parameters and
the above values give better result with sigmoid activation function in this
network. In contrast Molas and Yamazaki [4] and Nakamura et al [5] who
suggested to employ tangential sigmoid activation function, sigmoid activation
function with a constant is used. This pre-tests show that different networks

should be designed for different problems.

5.3 First Neural Network: Damage Indices Approximation

The models suggested by the previous researchers is a multilayer network
with one hidden layer (Molas and Yamazaki [4], Nakamura et al [5], Ghaboussi
and Garrett [8]). They explained that two-hidden-layer network will not give
additional improvement. Therefore the software DAMAGE was written for two-
hidden-layer network to examine the performance of the network. Since the
results were satisfactory, a network with one hidden layer was not tested. After
some pre-tests a 15-9-4-1 network was decided to be used for the first part (NN-
la). During the training process the learning rate is changed adaptively but not as
described in Chapter 3. A new method will be proposed by the author to examine
the effect of learning rate but not to obtain faster training. According to this new
approach, it is assumed that the network has an optimum learning rate or generally
a range of learning rate, which gives a good performance for all weights. It is a

well-known fact that the performance of the algorithm increases if every weight
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has its own learning rate, which changes adaptively as mentioned before. This
new method assumes that there may be a range of learning rate, which is

applicable to all weights. Let us first explain the concept of range of learning rate
(LR).

LR

lterations

Figure 5.1 Change in LR

The approach is to change LR periodically as shown in Figure 5.1. Other
suggestions can be done such as sinusoidal change, but the main idea should be a
periodic change in LR. The LR range will be the maximum and the minimum

value of LR throughout the iterations.

The LR range and the period of this change may be variable throughout
the iterations (Figure 5.2). The proposed approach assumes that the user can
change these values throughout the iterations. Throughout the training. of the first
neural network this approach was used. LR range is compressed and an optimal
LR range is obtained as shown in Figure 5.3. For the first neural network with 84
training data, this range is about [0.0001, 0.0002]. Training the network with this
type of learning rate results very slow learning but continuous decrease in
maximum error. The network is trained, with a sigmoid constant of 3.5 and bias -
1, until a maximum error of 0.0018 is reached. Then the network is tested with the

testing set and the results are presented below.
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Figure 5.2 Variable LR range and period
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Figure 5.3 Definition of optimum LR range
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Figure 5.10 NN-1a implementation of effect of MP on FR3

The 15-9-4-1 network is trained for the second training set, which consists

of 445 data, but the learning performance was not so efficient. After some tests for

the second training set it is decided to use a 15-11-6-1 network with a sigmoid

constant -3.5 and a bias -1 for all neurons (NN-1b). LR range came out to be

[0.35, 0.42]. Since the whole data obtained from the first analysis of FR3 is used,

additional analyses are done for the modified versions of FR3.

Table 5.3 Modified Frames

Frame | CDP(%) | CSP(%) | BDP(%) | BSP(%) | DR(%) | MP(%)
MODI 120 120 120 120 2 120
MOD2 80 80 80 80 7 80
MOD4 120 120 80 80 3 120
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The results are given below. The graphs presented in Figure 5.11 to 5.17
are the results for the training set, they are expected to be very efficient. This
successful implementation does not mean that the network will be efficient for the

test set. These graphs are presented here merely to show the behaviour of neural

network.

The graphs presented by Figure 5.18 to Figure 5.20 are the results for the
test set: MOD1, MOD2 and MOD3, respectively. The discussions of these results
will be done at the end of this chapter.
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In the above part of the study neural network served as a function whose
parameters are unknown with fourteen inputs (Figure 5.21). To visualise how the
behaviour of this function, 856 additional runs were made. In these runs the effect
of every parameter is examined by changing the value of that parameter and fixing

the other parameters for several values of PGA.
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Figure 5.21 Representation of NN-1a and NN-1b
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5.4 Second Neural Network: Damage Classification

In this part of study a new model, is tested (NN-2). This model does not
aim to find the damage indices yet just to classify an earthquake experienced
structural system. The architecture of this model is 15-17-9-4 with bias of —1 and
sigmoid constant of 1. The damage classification proposed by Stone and Taylor
[7] (Table 2.2) is used in this part. If the output layer are as shown in Figure 5.46,

then the classification will be as shown in Table 5.4,

o1

02

03

04

AR

Figure 5.48 Output layer of NN-2

Table 5.4 Coding of NN-2 for damage classification

No Classification 01 02 03 04
I SLIGHT D. 1 0 0 0
I REPAIRABLE 0 1 0 0

811 IRREPAIRABLE 0 0 1 0

v COLLAPSED 0 0 0 1
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The training and the test sets for NN-2 is the same as training and test sets
of NN-1a, which consists of 84 data and 445 data respectively. The following

table summarises the erroneous estimation done by NN-2.

Table 5.5 Wrong estimations done by NN-2

Data | DI Class. | Class. | O1(%) | 02(%) | 03(%) | 03(%)
No. | (IDARC) |(IDARC)| NN-2

12 | 0422 Il 11 03 | 964 | 32 | 01
56 | 0.100 I I | 23 | 968 | 07 | o1
66 | 0.125 11 1 | 552 | 444 | 03 | o1
201 | 0.099 I il 1.1 | 978 | 1.0 | o1
202 | 0.097 1 I | 343 | 650 | 05 | 01
239 | 0416 Il i 03 | 852 | 144 | 01
304 | 0414 101 11 22 | 661 | 317 | 01
305 | 0.406 Il II 03 | 924 | 72 | o1
369 | 0.422 0T I 02 | 622 | 374 | 01
370 | 0.401 I I 04 | 940 | 55 | 01
403 | 0.091 I II 93 | 895 | 1.1 | 01
404 | 0.099 I I 10 | 97.8 | 11 | o1
405 | 0.106 I I | 49 | 939 | 12 | 00

The above table shows that NN-2 is more efficient then NN-1a although

they have the same training and test sets.
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5.5 Discussion of Results

5.5.1 General

Neural networks are gaining popularity in civil engineering area but are
not yet suitable for market usage. Although it is reported that some structural
analysis software is reported to have neural network module, the above study
shows that damage analysis by neural networks is promising field but it is not

ready for everyday practice yet.

In this study very small training sets were used. These sets were obtained
from nonlinear damage analysis of simple frames. Hence the above network is
optimised for only FR3 but not the other frames. Experimental data or real case
data will be much more useful to create networks that work for several types of
structures. For example most of the buildings in Turkey are frames with shear
walls or masonry buildings. Instead of using software, real earthquake damage
data of these buildings could be used for training. The aim of the study was not to
obtain commercial software but just to examine the performance of neural

networks and to create new models for damage analysis.

One of the mistakes done during the design of the above networks is to use
a parameter, which is obtained from the nonlinear dynamic analysis namely
TD/H. At the beginning this parameter was thought to have effect on damage and
hence used in the network. Since the main reason for utilising neural networks is
not to make a nonlinear analysis, the choice of TD/H is not entirely logical. The
above network may only be utilised for the structures whose analyses have been

made before.
Maximum error used as stopping criteria during the training of the

networks. It was observed that the LR period and LR range concepts proposed in

this study are other subjects of research. In this study one LR range was used for
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all weights but every weights may have its own LR range and period. Optimum
LR ranges and periods may be obtained adaptively using several stochastic

algorithms during the training phase.

The data sets were scaled before the training. The outputs were also
scaled. It was observed that when L is not equal to the minimum damage in the

training set, the maximum error increases. Hence a value of 0.032 is used for L.

Since the training and testing sets are based on the El Centro earthquake,
the above networks are not expected to give satisfactory results for other
earthquakes. The training set should include several data for several earthquakes
and more parameters that define the earthquake properties should be used. In the

later parts discussions specific to network models is given

5.5.2 NN-1a

This network was not successful at the implementations of CDP, BDP, and
BSP especially for the larger values of PGA. The possible reason for this is the
size of the learning set. The set size should be supported with the additional data
at which the network fails. The other implementations were done successfuly.

Although the training set is so small the efficiency of the network is good.

5.5.3 NN-1b

Figures from 5.11 to 5.17 show that the network adopted itself according
to the learmning set. The performance was very good for the modified frames
especially for PGA < 0.7g. This result arises from the fact that the efficiency of

the network increases with the increasing size of learning rate.
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The graphs in Figures from 5.23 to 5.46 show us that the parameters have
an effect similar to sigmoid function on the network. But it is impossible to

visualise the behaviour of the network in n-dimensional space.

5.5.4 NN-2

This network is constructed utilising the main objective behind neural
networks: classification. It is the most powerful network when compared with
others. The Table 5.5 shows that the network fails when the damage indices are
very close to values that define the boundaries of the classifications. Even the
probabilities, which were estimated by NN-2, for several damage states are very
satisfactory. This way of damage classification can give a decision parameter to

the user for the structures that can be classified for two damage states.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 General

This study consists of two main parts. In the first part the effects of
structural parameters on damage of generalised yielding systems have been
studied. For this purpose the software IDARC was utilised for the nonlinear
dynamic and damage analysis of three frames and an SDOF system. The built-in
damage model was modified Park and Ang damage model, which incorporates
maximum drift and hysteretic energy. The most effective parameters were
determined through the use of the resulting graphs. All analyses were done with
the El Centro earthquake record. Use of only one earthquake record was a
limitation. Since the main aim of this study was to develop an approach for
damage analysis and neural network study, additional earthquake records other
then listed in Table 4.14 are not used. In the second part, two types of neural
networks have been utilised for the implementation of the damage analysis of the
structural systems. In the first model the most popular architecture was employed
to obtain the damage index while in the second model a new method is employed
for the classification of the damage. The performance of the first model was
described by several graphs. The results for the second network were presented in
tabular form. The conclusions drawn from this study and recommendations for the

future research are listed.

6.2 Conclusions for the Damage Analysis

o El Centro earthquake seems to effect the damage when it is scaled such that

PGA>0.2g. For the earthquake record calibrated for PGA<O0.2g, the
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contributions of different structural parameters to the damage are more or
less the same.

¢ The effects of shear wall, column, damping and structural mass on structural
damage are observed to be larger for the earthquake loadings with large
PGA. The limiting value for the El Centro earthquake is 0.2g. Beam
properties do not have a clear effect on damage. Damage of frame with
shear walls is highly effected by the shear wall area and steel ratio while
column parameters, damping and mass effected damage of the frames
without shear walls.

e TS-500, EUROCODE-2, ACI code specifications result in the most
economical design for wire frames.

* The fundamental period of the structure and the deflection of the top storey
are observed to have the most important effect on damage.

* IDARC appears to be a software package that still requires benchmark

testing

6.3 Conclusions for the Neural Network Analysis

» Neural networks used for the estimation of damage indices prove to be
efficient when a well distributed training set is used for training.

e Neural networks used for the classification of the damage prove to be more
efficient than the classical model of neural network used in the previous
case.

e A new concept called leaming rate range can be introduced alternate to the
adaptively changing learning rate.

e Although accelerated algorithms were not employed for the training, pure

back-propagation algorithm performed very well.
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6.4 Recommendations for future research

e Damage indices should be improved to take account of the effects of the
behaviour of multi degree of freedom systems such as the stability of the
structural systems.

* Better tested software should be used for shear wall analysis.

* Real earthquake-damage data should be used for training more generalised
networks.

¢ The design of the neural networks should be improved by eliminating less
important parameters and incorporating important parameters for the system
identification. This implies a wide testing program.

o Neural networks could be used to obtain the most economical and CDP,
CSP, BDP, BSP and MP values in a performance based format.

¢ Modular neural networks, which consist of more than one network, could be
designed for the use of not only for one structure but also for several
structures. In these networks an initial network could make a system
identification that searches for the network reflecting the structural system

better.
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